C-Linker of Cyclic Nucleotide–gated Channels Controls Coupling of Ligand Binding to Channel Gating

نویسندگان

  • Pierre Paoletti
  • Edgar C. Young
  • Steven A. Siegelbaum
چکیده

Cyclic nucleotide-gated channels are composed of a core transmembrane domain, structurally homologous to the voltage-gated K+ channels, and a cytoplasmic ligand-binding domain. These two modules are joined by approximately 90 conserved amino acids, the C-linker, whose precise role in the mechanism of channel activation by cyclic nucleotides is poorly understood. We examined cyclic nucleotide-gated channels from bovine photoreceptors and Caenorhabditis elegans sensory neurons that show marked differences in cyclic nucleotide efficacy and sensitivity. By constructing chimeras from these two channels, we identified a region of 30 amino acids in the C-linker (the L2 region) as an important determinant of activation properties. An increase in both the efficacy of gating and apparent affinity for cGMP and cAMP can be conferred onto the photoreceptor channel by the replacement of its L2 region with that of the C. elegans channel. Three residues within this region largely account for this effect. Despite the profound effect of the C-linker region on ligand gating, the identity of the C-linker does not affect the spontaneous, ligand-independent open probability. Based on a cyclic allosteric model of activation, we propose that the C-linker couples the opening reaction in the transmembrane core region to the enhancement of the affinity of the open channel for agonist, which underlies ligand gating.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three amino acids in the C-linker are major determinants of gating in cyclic nucleotide-gated channels.

The activation of cyclic nucleotide-gated (CNG) channels is a complex process comprising the initial ligand binding and a consecutive allosteric transition from a closed to an open configuration. The cone and olfactory CNG channels differ considerably in cyclic nucleotide affinity and efficacy. In each channel, the cyclic nucleotide-binding site is connected to the last transmembrane segment of...

متن کامل

Structure of the SthK Carboxy-Terminal Region Reveals a Gating Mechanism for Cyclic Nucleotide-Modulated Ion Channels

Cyclic nucleotide-sensitive ion channels are molecular pores that open in response to cAMP or cGMP, which are universal second messengers. Binding of a cyclic nucleotide to the carboxyterminal cyclic nucleotide binding domain (CNBD) of these channels is thought to cause a conformational change that promotes channel opening. The C-linker domain, which connects the channel pore to this CNBD, play...

متن کامل

Structure of the C-terminal region of an ERG channel and functional implications.

The human ether-à-go-go-related gene (hERG) encodes a K(+) channel crucial for repolarization of the cardiac action potential. EAG-related gene (ERG) channels contain a C-terminal cyclic nucleotide-binding homology domain coupled to the pore of the channel by a C-linker. Here, we report the structure of the C-linker/cyclic nucleotide-binding homology domain of a mosquito ERG channel at 2.5-Å re...

متن کامل

Antagonists of cyclic nucleotide-gated channels and molecular mapping of their site of action.

Activation of photoreceptor and olfactory cyclic nucleotide-gated (CNG) channels involves distinct ligand-binding and channel-gating reactions. To dissociate binding from gating, we identified the first competitive antagonists of CNG channels: specific phosphorothioate derivatives of cAMP and cGMP. We also identified membrane-permeant forms of these molecules that are antagonists and that will ...

متن کامل

Multimerization of the Ligand Binding Domains of Cyclic Nucleotide-Gated Channels

Cyclic nucleotide-gated (CNG) channels comprise four subunits and are activated by the direct binding of cyclic nucleotide to an intracellular domain on each subunit. This ligand binding domain is thought to contain a beta roll followed by two alpha helices, designated the B and C helices. To examine the quaternary structure of CNG channels and how it changes during ion channel gating, we intro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 113  شماره 

صفحات  -

تاریخ انتشار 1999